
Model Checking Stencil ComputationsWritten in a
Partitioned Global Address Space Language

Tatsuya Abe, Toshiyuki Maeda, and Mitsuhisa Sato
RIKEN AICS

HIPS’13
May 20, 2013

What is Stencil Computation?

Update each array element using its neighboring elements.

Example code:

do i=1,8

b(i)=a(i)+a(i+1)

end do

a 1

���
�
�

))TTTTTTTTTTTT2

���
�
�

���
�
�

3

���
�
�

���
�
�

4

���
�
�

���
�
�

5

���
�
�

���
�
�

6

���
�
�

���
�
�

7

���
�
�

���
�
�

8

���
�
�

���
�
�

b 1 2 3 4 5 6 7 8

Parallelizing Stencil Computation on Multiple Nodes

Process 1 Process 2

a 1

���
�
�

&.TT
TTTT

TTTT
TTTT

TTTT
TTTT

TTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T2

���
�
�

���
�
�

3

���
�
�

���
�
�

4

���
�
�

���
�
�

5

���
�
�

�
 �
��
��

��
��
�

6

���
�
�

���
�
�

7

���
�
�

���
�
�

8

���
�
�

���
�
�

b 1 2 3 4 5 6 7 8

Need to copy boundary elements between processes.

Stencil Computation in MPI

Code *how* to communicate among computational nodes.

call MPI_COMM_RANK(MPI_COMM_WORLD, me,

ierr)

...

you=mod(me+1,2)

call MPI_IRECV(a(5), 1,

MPI_DOUBLE_PRECISION, you,

MPI_ANY_TAG, MPI_COMM_WORLD, req, ierr)

call MPI_SEND(a(1), 1,

MPI_DOUBLE_PRECISION, you,

MPI_ANY_TAG, MPI_COMM_WORLD, ierr)

call MPI_WAIT(req, stat, ierr)

do i=1,4

b(i)=a(i)+a(i+1)

end do

Example Stencil Computation in a PGAS language: XcalableMP

Code *what* we compute by using all nodes.

!$xmp nodes p(2)

!$xmp template t(8)

!$xmp distribute t(block) onto p

!$xmp align a(i) with t(i)

!$xmp align b(i) with t(i)

!$xmp shadow (0:1) :: a

...

...

!$xmp reflect (a) width (/periodic/0:1)

!$xmp loop on (i)

do i=1,8

b(i)=a(i)+a(i+1)

end do

Process 1 Process 2

t 1 2 3 4 5 6 7 8

a 1 2 3 4 5 6 7 8

a 1

'/XXX
XXXXX

XXXXX
XXXXX

XXXXX
XXXX

XXXXX
XXXXX

XXXXX
XXXXX

XXXXX
XX 2 3 4 5

~� ��
��
��

��
��
��

6 7 8

a 1 2 3 4 5 6 7 8

← the original stencil code remains unchanged

Common (Frequently Seen) Mistakes in XcalableMP

Directives are inserted inappropriately

• reflect directive is missing

• reflect directive is redundant

Missing Reflect

!$xmp shadow (0:1) :: a

...

!$xmp loop on (i)

do i=1,8

a(i)=... ← a is updated
end do

!$xmp reflect (a) width (/periodic/0:1) ← missing
!$xmp loop on (i)

do i=1,8

b(i)=a(i)+a(i+1) ← b is computed by an old value in the shadow
end do

Redundant Reflect
!$xmp shadow (0:1) :: a

...

!$xmp reflect (a) width (/periodic/0:1) ← to compute b

!$xmp loop on (i)

do i=1,8

b(i)=a(i)+a(i+1)

end do

↓ to compute c, try to reflect, but

!$xmp reflect (a) width (/periodic/0:1) ← redundant
!$xmp loop on (i)

do i=1,8

c(i)=3*a(i)+4*a(i+1)

end do

Our Approach to Find Bugs: Model Checking

Verify a property of a program by exploring all the states the
program can reach.

State: a set of pairs of variables and values
x=0
y=0
z=0

Program: labelled state transition system

x=0
y=0
z=0

x:=1 //
x=1
y=0
z=0

y:=1 //
x=1
y=1
z=0

z:=1 //
x=1
y=1
z=1

Problem of Model Checking (Parallel Programs): State Explosion
The number of state to be explored increases dramatically
(especially in concurrent/parallel programs).

x=0
y=1
z=1

//
x=1
y=1
z=1x=0

y=0
z=1

//

::uuuuuu
OO x=1

y=0
z=1

::uuuuuu

x=0
y=1
z=0

//
x=1
y=1
z=0

OO

x=0
y=0
z=0

y:=1

::uuuuuu

z:=1

OO

x:=1
//
x=1
y=0
z=0

OO

::uuuuuu

Common Solution: Abstract a Target Program

More concretely:

• keep parts (of a program) that may contain bugs

• remove irrelevant parts (of a program)

Abstractions introduced in this work

• Shorten lengths of arrays

• Check arrays (in a program) separately

Abstraction 1: Shorten Length of an Array

Observation: bugs occur when accessing boundaries of
arrays.

!$xmp shadow (0:1) :: a

Process 1 Process 2

original 1 2 3 4 5 6 7 8

abstracted 1 5

The number of states becomes invariant to w.r.t. the length
of an array.

Abstraction 2: Check arrays separately
Observation: arrays are independent of each other w.r.t. missing
and redundant directives.

!$xmp nodes p(10)

!$xmp shadow (0:1) :: a

!$xmp shadow (0:2) :: b

The number of a’s boundaries: 10

The number of b’s boundaries: 20

Check a’s boundaries: 210 states

Check b’s boundaries: 220 states

simulaneously: 210 × 220 = 230 states

individually: 210 + 220 ≒ 220 states

How to Implement the Abstractions

Updating the source code of programs is tedious,
error-prone, and non-productive.

Our approach: design a language for implementing
abstraction1.

In our language, we can give abstractions without
touching source codes.

1Tatsuya Abe, Toshiyuki Maeda, and Mitsuhisa Sato. Model Check-
ing with User-Definable Abstraction for Partitioned Global Address Space
Languages. In Proc. of PGAS’12.

Abstraction 1: Shorten Length of an Array

Observation: bugs occur when accessing boundaries of
arrays.

!$xmp shadow (0:1) :: a

Process 1 Process 2

original 1 2 3 4 5 6 7 8

abstracted 1 5

The number of states becomes invariant to w.r.t. the length
of an array.

Abstraction 1: Shorten Length of an Array

Observation: bugs occur when accessing boundaries of
arrays.

!$xmp shadow (0:1) :: a

Process 1 Process 2

original 1 2 3 4 5 6 7 8

abstracted 1 5

The number of states becomes invariant to w.r.t. the length
of an array.

Abstraction 2: Check arrays separately
Observation: arrays are independent of each other w.r.t. missing
and redundant directives.

!$xmp nodes p(10)

!$xmp shadow (0:1) :: a

!$xmp shadow (0:2) :: b

The number of a’s boundaries: 10

The number of b’s boundaries: 20

Check a’s boundaries: 210 states

Check b’s boundaries: 220 states

simulaneously: 210 × 220 = 230 states

individually: 210 + 220 ≒ 220 states

Abstraction 2: Check arrays separately

Observation: arrays are independent of each other w.r.t. missing
and redundant directives.

!$xmp nodes p(10)

!$xmp shadow (0:1) :: a

!$xmp shadow (0:2) :: b

The number of a’s boundaries: 10

The number of b’s boundaries: 20

Check a’s boundaries: 210 states

Check b’s boundaries: 220 states

simulaneously: 210 × 220 = 230 states

individually: 210 + 220 ≒ 220 states

Experimental Results

Target Programs

• Himeno Benchmark (jacobi)

• Laplace Equation Solver

• SCALE-LES in XcalableMP

A library for the simulation of various weather and
climate models of the earth and planets.

lines arrays max shadow

Himeno benchmark 65 1 1

Laplace solver 80 1 2

SCALE-LES 1442 13 2

SCALE-LES in XcalableMP
We found 4 errors.

$ diff -u scale_unfixed.f90 scale_fixed.f90

--- scale_unfixed.f90 2013-05-20 11:59:16.288925500 +0900

+++ scale_fixed.f90 2013-05-20 11:59:18.397046100 +0900

@@ -353,7 +353,7 @@

! end do

! memory copy

-!$xmp reflect (dens, pott, momx, momy, momx) ← mis-spelling
+!$xmp reflect (dens, pott, momx, momy, momz)

! call copyBoundary (dens)

! call copyBoundary (pott)

! call copyBoundary (momx)

@@ -1102,6 +1102,7 @@

!!! z-direction momentum equation !!!

+!$xmp reflect (work_w2, work_w4) ← missing
!$xmp loop (ix,jy) on t(ix,jy)

do jy = JS, JE

do ix = IS, IE

@@ -1119,9 +1120,7 @@

end do

end do

-!$xmp reflect (work_l2) ← redundant
! call copyBoundary (work_w2, dim=1)

-!$xmp reflect (work_l4) ← redundant
! call copyBoundary (work_w4, dim=2)

!$xmp loop (ix,jy) on t(ix,jy)

SCALE-LES in XcalableMP (Retry)

After fixing the found 4 bugs, we tried to check whether the
bugs were (surely) fixed.

Total time: 373 seconds.

21 GiB memory is occupied.

CPU Intel Xeon X5650 2.67GHz

Memory 24 GB

Summary

• We proposed and implemented model checking of
stencil computation written in a PGAS language
XcalableMP.

• We implemented abstractions for avoiding the state
explosion by utilizing our previous work [PGAS2012].

• We successfully found 4 errors in a real application
program (SCALE-LES).

Related Work
Abstraction for program verification for PGAS languages:

MPI-SPIN: S. Siegel. MPI-Spin to Model Check MPI Programs with Nonblocking
Communication. Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 2006.

UPC-SPIN: A. Ebnenasir. UPC-SPIN: A Framework for the Model Checking of UPC
Programs. In Proc. of PGAS’11.

X10X: M. Gligoric et al. X10X: Model Checking a New Programming Language with an
”Old” Model Checker. In Proc. of ICST, pages 11–20, 2012.

CAF-SPIN: T. Abe et al. Model Checking with User-Definable Abstraction for Partitioned
Global Address Space Languages. In Proc. of PGAS’12.

All the above previous works do not provide any useful feature

especially for handling stencil computation.

Future Work

1. Apply our approach to other PGAS languages.

2. Try other computation patterns and verification properties.

3. Extend our approach to support relaxed memory
consistency models.
The same program may perform different behaviors on
different memory models.

